Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.
نویسندگان
چکیده
The Southern Hemisphere has traditionally been considered as having a fundamentally vicariant history. The common trans-Pacific disjunctions are usually explained by the sequential breakup of the supercontinent Gondwana during the last 165 million years, causing successive division of an ancestral biota. However, recent biogeographic studies, based on molecular estimates and more accurate paleogeographic reconstructions, indicate that dispersal may have been more important than traditionally assumed. We examined the relative roles played by vicariance and dispersal in shaping Southern Hemisphere biotas by analyzing a large data set of 54 animal and 19 plant phylogenies, including marsupials, ratites, and southern beeches (1,393 terminals). Parsimony-based tree fitting in conjunction with permutation tests was used to examine to what extent Southern Hemisphere biogeographic patterns fit the breakup sequence of Gondwana and to identify concordant dispersal patterns. Consistent with other studies, the animal data are congruent with the geological sequence of Gondwana breakup: (Africa(New Zealand(southern South America, Australia))). Trans-Antarctic dispersal (Australia <--> southern South America) is also significantly more frequent than any other dispersal event in animals, which may be explained by the long period of geological contact between Australia and South America via Antarctica. In contrast, the dominant pattern in plants, (southern South America(Australia, New Zealand)), is better explained by dispersal, particularly the prevalence of trans-Tasman dispersal between New Zealand and Australia. Our results also confirm the hybrid origin of the South American biota: there has been surprisingly little biotic exchange between the northern tropical and the southern temperate regions of South America, especially for animals.
منابع مشابه
Patterns in the assembly of temperate forests around the Northern Hemisphere.
Recent studies of Northern Hemisphere biogeography have highlighted potentially significant differences between disjunction patterns in plants versus animals. To assess such differences, we compiled a larger sample of relevant plant phylogenies from which disjunction patterns, ancestral areas and directions of movement could be inferred. We considered 66 plant clades with species variously ende...
متن کاملBiogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species
Oceanic islands lacking connections to other land are extremely isolated from sources of potential colonists and have acquired their biota mainly through dispersal from geographically distant areas. Hence, isolated island biota constitutes interesting models to infer biogeographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets of the genus Cellana (Nacellidae:...
متن کاملHistorical biogeography of Haloragaceae: an out-of-Australia hypothesis with multiple intercontinental dispersals.
Haloragaceae are a cosmopolitan plant family with its centre of diversity in Australia. Here, we investigate the historical biogeography of the family and the role of vicariance or dispersal in shaping its current distribution. DNA sequences from ITS, matK and the trnK 5' and trnK 3' introns were obtained for 102 species representing all 8 genera of Haloragaceae for use in Bayesian molecular da...
متن کاملDiversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals.
• A central aim of biogeography is to understand when and how modern patterns of species diversity and distribution developed. Many plant groups have disjunct distributions within the Northern Hemisphere, but among these very few have been studied that prefer warm semi-arid habitats. • Here we examine the biogeography and diversification history of Juniperus, which occurs in semi-arid habitats ...
متن کاملHistorical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage
Truffles have evolved from epigeous (aboveground) ancestors in nearly every major lineage of fleshy fungi. Because accelerated rates of morphological evolution accompany the transition to the truffle form, closely related epigeous ancestors remain unknown for most truffle lineages. This is the case for the quintessential truffle genus Tuber, which includes species with socio-economic importance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2004